246 research outputs found

    Modular Verification for a Class of PLTL Properties

    No full text
    The verification of dynamic properties of a reactive systems by model-checking leads to a potential combinatorial explosion of the state space that has to be checked. In order to deal with this problem, we define a strategy based on local verifications rather than on a global verification. The idea is to split the system into subsystems called modules, and to verify the properties on each module in separation. We prove for a class of PLTL properties that if a property is satisfied on each module, then it is globally satisfied. We call such properties modular properties. We propose a modular decomposition based on the B refinement process. We present in this paper an usual class of dynamic properties in the shape of G (p -> Q), where `p' is a proposition and `Q' is a simple temporal formula, such as `X q', `F q', or `q U r' (with `q' and `r' being propositions). We prove that these dynamic properties are modular. For these specific patterns, we have exhibited some syntactic conditions of modularity on their corresponding Buchi automata. These conditions define a larger class which contains other patterns such as `G (p -> X (q U r))'. Finally, we show through the example of an industrial Robot that this method is valid in a practical way

    Results of a pilot study on the involvement of bilateral inferior frontal gyri in emotional prosody perception: an rTMS study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The right hemisphere may play an important role in paralinguistic features such as the emotional melody in speech. The extent of this involvement however is unclear. Imaging studies have shown involvement of both left and right inferior frontal gyri in emotional prosody perception. The present pilot study examined whether these brain areas are critically involved in the processing of emotional prosody and of semantics in 9 healthy subjects. Repetitive transcranial magnetic stimulation was used with a coil centred over left and right inferior frontal gyri, as localized by neuronavigation based on the subject's MRI. A sham condition was included. An online-TMS approach was applied; an emotional language task was completed during stimulation. This computerized task consisted of sentences pronounced by actors. In the semantics condition an emotion (fear, anger or neutral) was expressed in the content pronounced with a neutral intonation. In the prosody condition the emotion was expressed in the intonation, while the content was neutral.</p> <p>Results</p> <p>Reaction times on the emotional prosody task condition were significantly longer after rTMS over both the right and the left inferior frontal gyrus as compared to sham stimulation and after controlling for learning effects associated with order of condition. When taking all emotions together, there was no difference in effect on reaction times between the right and left stimulation. For the emotion Fear, reaction times were significantly longer after stimulating the left inferior frontal gyrus as compared to the right inferior frontal gyrus. Reaction times in the semantics task condition were not significantly different between the three TMS conditions.</p> <p>Conclusions</p> <p>The data indicate a critical involvement of both the right and the left inferior frontal gyrus in emotional prosody perception. The findings of this pilot study need replication. Future studies should include more subjects and examine whether the left and right inferior frontal gyrus play a differential role and complement each other, e.g. in the integrated processing of linguistic and prosodic aspects of speech, respectively.</p

    Time Course of the Involvement of the Right Anterior Superior Temporal Gyrus and the Right Fronto-Parietal Operculum in Emotional Prosody Perception

    Get PDF
    In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody) conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS) to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400–1900 ms). Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction), revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become more apparent half-way through the sentence

    It's not what you say but the way that you say it: an fMRI study of differential lexical and non-lexical prosodic pitch processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aims to identify the neural substrate involved in prosodic pitch processing. Functional magnetic resonance imaging was used to test the premise that prosody pitch processing is primarily subserved by the right cortical hemisphere.</p> <p>Two experimental paradigms were used, firstly pairs of spoken sentences, where the only variation was a single internal phrase pitch change, and secondly, a matched condition utilizing pitch changes within analogous tone-sequence phrases. This removed the potential confounder of lexical evaluation. fMRI images were obtained using these paradigms.</p> <p>Results</p> <p>Activation was significantly greater within the right frontal and temporal cortices during the tone-sequence stimuli relative to the sentence stimuli.</p> <p>Conclusion</p> <p>This study showed that pitch changes, stripped of lexical information, are mainly processed by the right cerebral hemisphere, whilst the processing of analogous, matched, lexical pitch change is preferentially left sided. These findings, showing hemispherical differentiation of processing based on stimulus complexity, are in accord with a 'task dependent' hypothesis of pitch processing.</p

    Processing of inconsistent emotional information: an fMRI study

    Get PDF
    Previous studies investigating the anterior cingulate cortex (ACC) have relied on a number of tasks which involved cognitive control and attentional demands. In this fMRI study, we tested the model that ACC functions as an attentional network in the processing of language. We employed a paradigm that requires the processing of concurrent linguistic information predicting that the cognitive costs imposed by competing trials would engender the activation of ACC. Subjects were confronted with sentences where the semantic content conflicted with the prosodic intonation (CONF condition) randomly interspaced with sentences which conveyed coherent discourse components (NOCONF condition). We observed the activation of the rostral ACC and the middle frontal gyrus when the NOCONF condition was subtracted from the CONF condition. Our findings provide evidence for the involvement of the rostral ACC in the processing of complex competing linguistic stimuli, supporting theories that claim its relevance as a part of the cortical attentional circuit. The processing of emotional prosody involved a bilateral network encompassing the superior and medial temporal cortices. This evidence confirms previous research investigating the neuronal network that supports the processing of emotional information

    Social cognitive deficits and their neural correlates in progressive supranuclear palsy

    Get PDF
    Although progressive supranuclear palsy is defined by its akinetic rigidity, vertical supranuclear gaze palsy and falls, cognitive impairments are an important determinant of patients’ and carers’ quality of life. Here, we investigate whether there is a broad deficit of modality-independent social cognition in progressive supranuclear palsy and explore the neural correlates for these. We recruited 23 patients with progressive supranuclear palsy (using clinical diagnostic criteria, nine with subsequent pathological confirmation) and 22 age- and education-matched controls. Participants performed an auditory (voice) emotion recognition test, and a visual and auditory theory of mind test. Twenty-two patients and 20 controls underwent structural magnetic resonance imaging to analyse neural correlates of social cognition deficits using voxel-based morphometry. Patients were impaired on the voice emotion recognition and theory of mind tests but not auditory and visual control conditions. Grey matter atrophy in patients correlated with both voice emotion recognition and theory of mind deficits in the right inferior frontal gyrus, a region associated with prosodic auditory emotion recognition. Theory of mind deficits also correlated with atrophy of the anterior rostral medial frontal cortex, a region associated with theory of mind in health. We conclude that patients with progressive supranuclear palsy have a multimodal deficit in social cognition. This deficit is due, in part, to progressive atrophy in a network of frontal cortical regions linked to the integration of socially relevant stimuli and interpretation of their social meaning. This impairment of social cognition is important to consider for those managing and caring for patients with progressive supranuclear palsy
    corecore